

LAM Laser-Sensoren mit integriertem Ethernet-Interface

Handbuch

Laser-Sensor-LAM.pdf

Inhalt

1. Optische Weg-Mess-Systeme LAM-S und LAM-F 1.1. Produktkennzeichnung	3 3
2. Systembeschreibung	4
2. A nachlugatachnik	4 A
4. Funktionsprinzip	
5. Messaufbau	5
5.1. Montage Sensorkopf	5
6. Spezielle Anwendungen	5
6.1. Bewegte oder gestreifte Messobjekte	5
7. Fenlereinflusse	6
7.2. Kratzer innerhalb des Messflecks	6
7.3. Seitliches Streulicht.	6
7.4. Hell / Dunkel-Ubergänge	6 6
7.6. Winkelabhängigkeit der Messungen	
7.7. Fremdlicht-Empfindlichkeit	6
7.8. Rauschen	6
8. Messgenauigkeit und Einstellungen	7
8.1. Prüfprotokoll	7 7
8.3. Reaktionszeit und Bandbreite.	
8.4. Einstellbare Schaltpegel	7
8.5. Wiederholgenauigkeit	7
9. Netzwerkeinstellungen	7
10.1 Technische Daten I AM-S	8
10.2. Technische Daten LAM-F.	
11. Elektronik-Einheit	10
11.1. Anschlussbelegung Versorgung / Ausgänge	10
11.2. Anschlussbelegung Ethernet	
11.4. Status-LED's	
12 Kommunikationskomponenten	11
12.1. IP-Adresse des Sensors	
12.2. Regeln für die Vergabe von IP-Adressen	
12.3. Adressen-Konflikte auflosen	
13. Datenformat und Schnittstellen-Beschreibung	
13.1. Sensorsieuerung 13.2. Header Datenformat	12 13
13.3. Statusmeldungen	
14. Integrierter Web-Server	14
14.1. Einstellen der Working-IP-Adresse	14
15. Fehlersuche	15
15. Fehlersuche 16. Wartung	
 15. Fehlersuche 16. Wartung 17. Laser Sicherheit 18. Software-Beispiele 	
 15. Fehlersuche 16. Wartung 17. Laser Sicherheit	15 16 16
15. Fehlersuche	
 15. Fehlersuche	

Hinweis zu Hardware und Firmware-Versionen

Hardware-Version1.0mit D-Sub-25 SteckverbinderFirmware Elektroniksystem0.1

Das vorliegende Handbuch beschreibt Installation und Integration der Sensor-Hardware und die grundlegende Bedienung der Konfigurations- und Demo-Software. Das Handbuch wurde an die neue Hardware angepasst und neu gegliedert.

Die wichtigsten Neuerungen:

- Ethernet-Schnittstelle
- Netzwerk-Link Überwachung (intern)
- 10 Mbit Option für schwache Netzwerkverbindungen
- Mit jedem Daten-Paket werden die Sensorparameter übertragen.

Nach einem Reset bootet der Sensor neu. Die Einstellungen werden nicht zurückgesetzt.

Optisches Messsystem bestehend aus Sensorkopf, Sensorkopfkabel und Elektronik-Einheit

1. Optische Weg-Mess-Systeme LAM-S und LAM-F

Merkmale:

Messbereiche von 0,5 bis 200 mm Abstandsausgang für Distanzmessung ± 10V und 4...20 mA Einstellbare Integrationszeiten Lichtstärkeausgang 0 ... 10 V Allgemein unempfindlich gegenüber Oberflächenstrukturen und Farben Auflösung ab 0,02 μm Immun gegen Fremdlicht bis 20.000 LUX Schwellwerte zu weit / OK / zu nah einstellbar. Fehler-Ausgang Option Dickenmessung (nur LAM-S)

Typische Anwendungen:

Prüfung auf Maßhaltigkeit Lageerkennung kleiner Teile Lageerkennung von Teilen am Fließband Frei-Anzeige für Stempel der Stanzpresse Erkennung von Material-Überlappung Positions- bzw. Bruch-Kontrolle von Werkzeugen Roboterarm-Positionsanzeige An- bzw. Abwesenheitskontrolle von Teilen Lochtiefeprüfung Füllstandsüberwachung Vibrationsanalyse Crashtest Positionserfassung Fahrwerksoptimierung

1.1. Produktkennzeichnung

Typkennzeichnung:LAM-S-xx oder LAM-F-xx (xx steht für den Messbereich 0,5 mm ... 200 mm)Beispiel:LAM-S-4 (Sensor LAM-S mit 4 mm Messbereich)

2. Systembeschreibung

Die Serien LAM-S und LAM-F sind analoge Laser Abstandsmesser. Die Baureihe LAM-S-xx hat eine Ausgaberate von 10 kHz und eine Messrate von 54 kHz, die Baureihe LAM-F arbeitet mit einer Ausgaberate von 100 kHz und einer Messrate von 400 kHz.

Die Hardware besteht aus einem Sensorkopf und einer Elektronik-Einheit zur Aufbereitung der Signale sowie einem Verbindungskabel, das den Sensorkopf über einen 9-poligen D-Sub-Stecker mit der Elektronik-Einheit verbindet. Die Elektronik-Einheit verfügt außerdem über einen D-Sub-25 Stecker für den Anschluss an die Stromversorgung und die Messwertausgabe.

Wenn die Spannungsversorgung eingeschaltet ist, sendet der Sensor automatisch Daten in einem kontinuierlichen Strom von TCP/IP-Paketen. Dabei kümmert sich das TCP/IP automatisch darum, dass alle Datenblöcke vollständig beim empfangenden PC ankommen.

2.1. So tware

Zur Darstellung der Messwerte wird die Demosoftware "LAM-Software" zur Verfügung gestellt. Diese Software kommuniziert über das Ethernet-Netzwerk mit dem Sensor.

Die Software ist einfach zu bedienen und stellt den Messwert sowohl als Zahlenwert wie auch grafisch dar.

3. Anschlusstechnik

An der Elektronik-Einheit des Sensors befinden sich ein 25-poliger D-Sub Stecker mit Anschlüssen für die Spannungsversorgung und die Anlalog- und Digitalausgänge sowie ein RJ45-Anschluss für die Ethernet-Verbindung.

Eine Übertragung mehrerer Sensoren über ein WLAN ist möglich. Hubs werden nicht empfohlen, sondern verwenden Sie ausschließlich Ethernet-Switches. Bitte beachten Sie: Gigabit-Ethernet-Karten sind oft nicht in der Lage automatisch die Polarität der Tx- / Rx- Leitungen richtig zu ermitteln, beim Direktanschluss von Sensoren kann dies zu Problemen mit der Ethernet-Connectivity führen. Mit einem gekreuzten Ethernetkabel (Crosslink) funktioniert der Sensor jedoch problemlos direkt an der Netzwerkkarte des Rechners. Alternativ verwenden Sie einen 10/100 Mbit Ethernet-Switch. Die Übertragungsrate lässt sich bei Bedarf über den Web Browser (Seite 14) von 100 Mbit/s (Werkseinstellung) auf 10 Mbit/s umschalten.

Wenn mehrere Sensoren durch einen PC überwacht und ausgewertet werden, so sollen PC und die Grafikkarte eine ausreichende Leistung aufweisen.

Theoretisch können bis zu 90 Sensoren mit einem einzigen 100 Mbit Ethernet-Switch zusammengefasst werden. Man benötigt eine (zusätzliche*) Netzwerkkarte im Rechner, einen entsprechenden Ethernet-Switch, ein Ethernetkabel zu jedem Sensor, ein Ethernetkabel vom Switch zur Netzwerkkarte und ein passendes Netzteil für die Betriebs-Spannung (10 ... 30 V DC) zur Versorgung der Sensor.

* Für die Sensoren **sollte** eine *eigene* Netzwerkkarte eingebaut werden, so dass sich die Netzwerklast durch andere Netzwerk-Aktivitäten im PC nicht auf die Sensoren auswirken kann (und umgekehrt). Die Sensoren sind in diesem Fall in einem *getrennten* Subnetz. Dies ist eine zusätzliche Absicherung gegen ungewollte Störungen des Datentransfers der Sensoren.

4. Funktionsprinzip

Die Sensoren arbeiten nach dem Triangulationsprinzip: Auf das Messobjekt wird ein Lichtpunkt fokussiert. Durch Reflexion wird der projizierte Lichtpunkt über ein Objektiv auf einen Positionssensor (PSD) abgebildet.

Entscheidend für die Messung ist dabei das diffus reflektierte Licht des Messpunktes. Für ein einwandfreies Messergebnis benötigt der Sensor mindestens 10% Oberflächenreflexion. Ist die Intensität des reflektierten Lichtes zu gering und kann durch die Lichtregelung nicht mehr ausgeregelt werden, leuchtet die Diode "Error".

Gearbeitet wird mit Lichtimpulsen, wodurch die Abhängigkeit von konstantem Umgebungslicht sehr gering ist.

Durch permanente Überwachung werden Objektlage und Lichtstärke ständig überprüft.

5. Messaufbau

5.1. Montage Sensorkopf

Um exakte Messergebnisse zu erzielen, muss der Sensor so montiert werden, dass der Messstrahl genau senkrecht auf die Messoberfläche trifft. Eine Verkippung verursacht geometrisch einen größeren Messweg.

Der Sensorkopf muss so montiert werden, dass ein direkter Blick in den Laserstrahl vermieden wird. Der LASER-Warnaufkleber ist an einer gut sichtbaren Stelle anzubringen.

Zur Justage des Sensorkopfes können die LEDs MIN, OK, MAX zu Hilfe genommen werden.

Bei Auslieferung sind die MIN- und MAX-Werte auf die Grenzen des Messbereichs eingestellt. Solange die LED "OK" leuchtet, befindet sich das Objekt innerhalb des Messbereichs.

Hinweis: Um die Einkopplung von Störungen über den Sensorkopf zu vermeiden, sollte dieser mit den beiliegenden Isolierbuchsen montiert werden.

6. Spezielle Anwendungen

6.1. Bewegte oder gestreifte Messobjekte

Werden bewegte oder gestreifte Objekte erfasst, sollte die Montagerichtung des Sensorkopfes mit seiner Längsseite quer zur Bewegungsrichtung und quer zu den Streifen verlaufen. Auf diese Weise können bessere Messergebnisse im Kantenbereich erzielt werden.

6.2. Dickenmessung

Das Dickenmess-System besteht aus 2 Sensoren, die auf die Ober- bzw. Unterseite des Messobjekts gerichtet sind und dessen Dicke erfassen. Ein Sensor fungiert dabei als Master, der andere als Slave. Die Dicke ergibt sich aus der Addition der Messsignale.

Der Erfassungsbereich entspricht dem Messbereich eines Sensors, innerhalb dieses Bereichs ist die Dickenmessung unabhängig von der Position. Der Erfassungsbereich sollte etwas größer als die zu messende Dickenänderung + dem Bewegungsspiel sein.

Über ein spezielles Y-Kabel werden die beiden Sensoren und die dazu gehörigen Elektronik-Einheiten miteinander verbunden und mit Spannung versorgt. Die Objektdicke wird als 0...10 V-Signal am Master-Ausgang ausgegeben.

7. Fehlereinflüsse

7.1. Oberflächenmaterial

Als Messobjekte kommen alle möglichen Materialien, wie z.B. Metall, Plastik, Keramik, Gummi und Papier in Frage. Lediglich bei stark spiegelnden Oberflächen oder Flüssigkeiten muss der Einsatz im Einzelfall geprüft werden.

Bei leicht durchsichtigen Kunststoffen oder trüben Flüssigkeiten dringt der Messstrahl bis zu einer gewissen Tiefe in das Medium ein, bevor das diffus reflektierte Licht zurückgeworfen wird. Hier ist die wahre Messebene um die Eindringtiefe zu erweitern. Dies lässt sich im Einzelfall nur experimentell ermitteln.

7.2. Kratzer innerhalb des Messflecks

Ein Kratzer, dessen Richtung quer zur Linsenachse (Sendelinse-Empfangslinse) liegt, kann stärkere Emissionen von Licht verursachen, die ihr Maximum seitlich von der Mitte des Lichtflecks haben. Hierdurch wird eine veränderte Entfernung vorgetäuscht.

Zur Überprüfung von Oberflächen auf Kratzer können mit diesem Effekt wesentlich höhere Messgenauigkeiten erreicht werden, als mit der reinen Abstandsmessung.

Handelt es sich um ein bewegtes Objekt, so bleibt der mittlere (integrale) Messwert beim Durchfahren der Kratzerstelle konstant, d.h. die positive und negative Flanke, verursacht durch den Kratzer, heben sich gegenseitig auf.

7.3. Seitliches Streulicht

Befinden sich im seitlichen Streulichtbereich des Messpunktes stark reflektierende Objekte, die das Streulicht direkt in den Empfänger spiegeln, so kann dies zu Messfehlern führen.

Homogen streuende Objekte mit gleichem Reflexionsgrad bewirken diesen Fehler nicht. Befindet sich der spiegelnde Bereich außerhalb des Messpunktes, kann der Fehler im ungünstigsten Fall 2% betragen.

7.4. Hell / Dunkel-Übergänge

Wird eine Abstandsmessung an einer Stelle vorgenommen, an der das Material von einem diffus reflektierenden zu einem spiegelnden Material übergeht und damit einen sich stark ändernden Reflexionsfaktor enthält, kann dies im Übergangsbereich zu Messfehlern führen. Das Maximum der Lichtstärke liegt hier, bedingt durch die Oberfläche, nicht in der Mitte des Messpunktes.

7.5. Änderung des Reflexionsfaktors

Die Sensoren besitzen eine automatische Lichtstärkeregelung zur Anpassung an gut oder weniger gut reflektierende Objekte. Ändert sich die Oberflächenreflexion während des Messvorgangs, wird automatisch nachgeregelt.

7.6. Winkelabhängigkeit der Messungen

Es besteht eine geringe Winkelabhängigkeit der Messung, wenn der Sensor nicht rechtwinklig auf die Objektoberfläche gerichtet ist. Drehungen des Objekts bis zu 30° um die Achse A und 15° um Achse B bewirken keine nennenswerten Messfehler (s. Bild rechts). Die Winkelabhängigkeit bei matten Oberflächen mit großer diffuser Reflexion ist gering, bei spiegelnden Flächen ist sie etwas größer. Der Messfehler zeigt sich als Änderung des Verhältnisses Ausgangsspannung / Wegstrecke. Bleibt der Winkel konstant, kann er durch einen erneuten Abgleich eliminiert werden.

7.7. Fremdlicht-Empfindlichkeit

Fremdlicht bis zu 5.000 LUX wird ohne Fehler, bis zu 20.000 LUX mit geringem Fehler verarbeitet. Dies entspricht mittlerem Sonnenlicht auf weißer Oberfläche.

Bei der Installation der Lasersensoren soll darauf geachtet werden, dass kein direktes oder reflektiertes Sonnenlicht in die Empfangsoptik einstrahlen kann. Dieses "Fremdlicht" kann bei schwierigen Anwendungen zu Störungen der Messwertaufnahme führen.

7.8. Rauschen

Das Rauschen bestimmt die Auflösung des Sensors. Die Auflösung des Sensors wird am Anfang des Messbereichs angegeben. Am Ende des Messbereichs vergrößert sich das Rauschen und damit wird die Auflösung entsprechend schlechter.

Um die Auflösung zu verbessern, kann das Rauschen durch eine Filterung des Ausgangs reduziert werden. Die Geschwindigkeit des Sensors nimmt dadurch ab (s. Kap. 8.3).

8. Messgenauigkeit und Einstellungen

8.1. Prüprotokoll

Mit jedem Sensor wird ein Prüfprotokoll geliefert, das den individuellen Messfehler des Sensors graphisch deutlich verstärkt darstellt. Der relative Fehler ist die Abweichung von der Geraden, die durch 2 Messpunkte ± 40% des Messbereichs gelegt wird. Zur besseren Darstellung der Messfehler wird die Abweichung von der idealen Geraden mit einer Verstärkung (40-fach) dargestellt. Der absolute Fehler ist die Abweichung von dem jeweiligen Sollwert bezogen auf den Messbereich, er wird als Tabelle ausgegeben.

8.2. Linearisierung

Das Sensorelement (PSD) liefert keine zum Abstand lineare Ausgangsspannung, in der Auswerteelektronik findet deshalb eine Linearisierung statt. Die Linearisierung berücksichtigt unterschiedliche Reflexionsfaktoren der Oberflächen und liefert eine zur Messentfernung proportionale Spannung, unabhängig von der Oberflächenbeschaffenheit.

8.3. Reaktionszeit und Bandbreite

Die Anstiegszeit des Analogausgangs ist bei den Lasersensoren besonders schnell. Sie beträgt ca. 50 μ sec beim LAM-S oder 5 μ sec beim LAM-F für den Anstieg auf > 90% des Endwertes. Durch DIP-Schalter in der Auswerteelektronik kann die Integrationszeit erhöht werden. Hierdurch wird das Rauschen verringert und die Messgenauigkeit erhöht.

8.4. Einstellbare Schaltpegel

Die Elektronik-Einheit verfügt über 2 einstellbare Schaltpegel für Minimum- und Maximum-Schwellwerte. Die Schwellen lassen sich durch die mitgelieferte Software über den gesamten Messbereich einstellen. Um ein Flattern bei langsamen Übergängen zu vermeiden, arbeiten die Schwellen mit einer kleinen Hysterese. Bei Unterschreiten des Minimum-Wertes ist der Ausgang MIN aktiv, bei Überschreiten des Maximum-Wertes der Ausgang MAX, dazwischen ist der OK-Ausgang eingeschaltet. Zu beachten ist, dass die Schaltpegel nur innerhalb des Messbereichs arbeiten. Um den ersten Einsatz zu vereinfachen, sind die Schwellen ab Werk auf die Grenzen des Einsatzbereichs eingestellt. Die Schwellwerte werden intern mit der Abtastrate des digitalen Ausgangs von 30 kHz abgetastet, dies entspricht einer Reaktionszeit von 0,03 msec.

8.5. Wiederholgenauigkeit

Im Gegensatz zu mechanischen Messsystemen hat der optische Abstandssensor keine Hysterese oder Wiederholungs-Ungenauigkeiten. Begrenzt wird die Genauigkeit durch das Rauschen und die Oberflächenbeschaffenheit.

9. Netzwerkeinstellungen

IP Auslieferungsadresse	= 192.168.122.245
MAC-Adresse	00-08-DC-00-00-00
Port	= 3000
Subnetzmaske	= 255.255.255.0

Tipp: Bevor Sie einen Sensor ins Netzwerk bringen, sollten Sie die IP-Adressen auf die zu verwendenden IP-Adressen kontrollieren und ändern. Dies kann über den Web Browser gemacht werden (s. Kap. 14).

10. Technische Daten

10.1. Technische Daten LAM-S

LAM-S			0,5	2	4	10	20	50	100	200
Messbereich		[mm]	0,5	2	4	10	20	50	100	200
Anfang Messbereich		[mm]	23,75	23	22	40	55	115	170	240
Linearität ±		[µm]	1	4	8	20	40	100	200	400
Auflösung (bei f = 1	0 kHz)	[µm]	0,3	1,3	2,6	6,5	13	32,5	65	200
Auflösung (bei f = 2	0 Hz)	[µm]	0,02	0,1	0,2	0,5	1	2,5	6	20
Lichtpunkt-Durchme	sser	[mm]	0,1	0,2	0,3	0,6	0,9	1,5	1,5	2
Lichtquelle				La	ser, Wellei	nlänge 650)670 nm	, rot sicht	bar	
Abtastrate						54	kHz			
Laserschutzklasse			Klasse	e 2 nach D	IN EN 608	25-1:2001	11, erhö	hte Laserle	eistung op	tional
	Abstandsausgang			1	10V (optio	onal 010	V / 05V) ; 420m	A	
	Ausgangsimpedan	Z			Annäh	nernd 0 Oh	nm (10 mA	(max.)		
Analogausgang	Winkelfehler		E	Bei 30° Ob	jektneigur	ng (Achse /	4): ca. 0,5	% bei weil	Sem Objek	t
Analogausgang	Ausgaberate					10 kHz	(-3 dB)			
	Temperaturdrift				0,0	2% °C vom	Messber	eich		
	Lichtstärkeausgang	5	010V							
	MIN				+24V wen	n MIN unt	erschritte	n, LED gell	0	
Schaltausgänge mit	ОК			+24V we	enn MIN ü	ber- und N	/IAX unter	schritten,	LED grün	
Anzeige	MAX			+	24V wenn	MAX über	rschritten,	LED oran	ge	
	Fehler				+	24V / 100	mA, LED r	ot		
Schnittstelle						Etherne	t TCP/IP			
Baudrate						115.20	0 Baud			
Schalthysterese					ca.	0,5% vom	Messber	eich		
Zulässiges Fremdlich	t					20.00	0 LUX			
Betriebsdauer					50).000h für	Laser-Dio	de		
Isolationsspannung			200 V DC, 0V gegen Gehäuse							
Max. Vibration			5g bis 1kHz							
Betriebstemperatur			0° bis +50°C							
Lagertemperatur			-20° bis +70°C							
Luftfeuchte			bis 90% RH, nicht kondensierend							
Schutzart			Sensor: IP 64, Elektronik: IP 40							
Versorgungsspannur	Ig		+24V DC / 250mA (1030V)							
Anschlussstecker am	Gerät					25-pol D-S	ub Stecke	r		
Sensorkabellänge, St	andard					2	m			

Alle Angaben gelten für Messungen auf weißem Zielobjekt

Hinweis: Abmessungen und Gewichte der Sensorköpfe und der Elektronik-Einheit finden Sie im Anhang

Auflösung in Abhängigkeit von	Dip-Schalter-Stellung und	d Obiektfarbe am Be	ispiel LAM-S-10:

Auf weißem Objekt		Auf schwarzem Objekt		
LAM-S-10	Auflösung	LAM-S-10	Auflösung	
10 kHz	6,5 μm	10 kHz	100 µm	
7 kHz	6,0 μm	7 kHz	90 µm	
4 kHz	4,0 μm	4 kHz	75 μm	
1 kHz	3,0 μm	1 kHz	50 μm	
250 Hz	1,5 μm	250 Hz	30 µm	
100 Hz	1,0 μm	100 Hz	20 µm	
25 Hz	0,7 μm	25 Hz	10 µm	
20 Hz	0,5 μm	20 Hz	7,5 μm	

Die Messung erfolgte mit einem analogen Oszilloskop

10.2. Technische Daten LAM-F

LAM-F		0,5	2	4	10	20	50	100	200
Messbereich	[mm]	0,5	2	4	10	20	50	100	200
Anfang Messbereich	[mm]	23,75	23	22	40	55	115	170	240
Linearität ±	[µm]	1,5	6	12	30	60	150	300	600
Auflösung (bei f = 100) kHz) [µm]	0,8	3,5	7	17,5	35	50	100	330
Auflösung (bei f = 230) Hz) [µm]	0,05	0,2	0,4	1	2	7,5	15	50
Lichtpunkt-Durchmess	er [mm]	0,1	0,2	0,3	0,6	0,9	1,5	1,5	2
Lichtquelle			La	iser, Welle	nlänge 650)670nm,	, rot sichtb	ar	
Abtastrate					400	kHz			
Laserschutzklasse		Klass	e 2 nach D	DIN EN 608	25-1:2001	-11, erhöl	hte Laserle	eistung op	tional
	Abstandsausgang		=	±10V (opti	onal 010	V / 05V));420m/	4	
	Ausgangsimpedanz			Annäł	nernd 0 Oh	im (10 mA	(max.)		
	Winkelfehler		Bei 30° Ob	jektneigur	ng (Achse /	A): ca. 0,59	% bei weiß	em Objek	t
Androgausgang	Ausgaberate				100 kHz	2 (-3 dB)			
	Temperaturdrift			0,02	2 % °C von	n Messber	eich		
	Lichtstärkeausgang	010V							
	MIN		-	+24V weni	n MIN unte	erschritter	n, LED-Gelb	0	
Schaltausgänge mit	ОК		+24V we	enn MIN ü	ber- und N	MAX unterschritten, LED grün			
LED Anzeige	MAX		+	24V wenn	MAX übei	rschritten,	LED orang	ge	
	Fehler	+24V / 100mA, LED rot							
Schnittstelle		Ethernet TCP/IP							
Baudrate		115.200 Baud							
Schalthysterese der Sch	haltausgänge	ca. 0,5% vom Messbereich							
Zulässiges Fremdlicht		20.000 LUX							
Betriebsdauer		50.000 h für Laser-Diode							
Isolationsspannung				200	V DC, 0V g	egen Geh	äuse		
Max. Vibration				5 g bis 1k	Hz (Senso	rkopf, 20g	optional)		
Betriebstemperatur		0° bis +50°C							
Lagertemperatur		-20° bis +70°C							
Luftfeuchte	Bis 90% RH, nicht kondensierend								
Schutzart		Sensor: IP 64, Elektronik: IP 40							
Versorgung		+24 V DC / 200mA (1030V)							
Anschlussstecker am G	erät				25-pol D-S	ub Stecke	r		
Sensorkabellänge, Star	ndard				2	m			

Alle Angaben gelten für Messungen auf weißem Zielobjekt

Hinweis: Abmessungen und Gewichte der Sensorköpfe und der Elektronik-Einheit finden Sie im Anhang

LAM-F-4	Auflösung	LAM-F-0,5	Auflösung
100 kHz	6,4 μm	100 kHz	0,75µm
70 kHz	6,0 μm	70 kHz	0,68 μm
40 kHz	4,4 μm	40 kHz	0,55 μm
10 kHz	2,4 μm	10 kHz	0,30 μm
2,5 kHz	1,6 μm	2,5 kHz	0,20 μm
1 kHz	1,0 μm	1 kHz	0,13 μm
250 Hz	0,5 μm	250 Hz	0,10 μm
230 Hz	0,4 μm	230 Hz	0,10 μm

Auflösung in Bezug auf Dip-Schalter-Stellung am Beispiel LAM-F-4 und LAM-F-0,5:

Die Messung erfolgte mit einem analogen Oszilloskop auf weißem Objekt

11. Elektronik-Einheit

11.1. Anschlussbelegung Versorgung / Ausgänge

Pin	Signal	Pegel	Pin	Signal	Pegel
1	Abstandsausgang	± 10 V	14	Analog Masse	0 V
2	Fehlerausgang	0/24V	15	n.c.	
3	n.c.		16	Digitalausgang MAX	0 / 24 V
4	n.c.		17	Abstandseingang	± 10 V
5	Digitalausgang OK	0/24V	18	Masse	
6	Abstandsausgang	420 mA	19	Digitalausgang MIN	0 /24 V
7	n.c.		20	Lichtstärkeausgang	010 V
8	Masse	0 V	21	Versorgungsspannung	+ 24 V
9	n.c.		22	n.c.	
10	n.c.		23	n.c.	
11	n.c.		24	n.c.	
12	n.c.		25	n.c.	
13	n.c.		Gehäuse	EMV	

Zur Nutzung des Analogausgangs 4...20 mA muss ein Vorwiderstand von 400 Ω (0,5 W; 0,1% Intensität) zwischen Pin 6 und Pin 14 in Reihe geschaltet werden.

11.2. Anschlussbelegung Ethernet

Als Beispiel ist hier ein Ethernetkabel, RJ45, gekreuzt, aufgeführt:

Pin	Signal	Stecker A	Pin	Signal	Stecker B
1	Sendedaten +	grün/weiß	1	Empfangsdaten +	rot/weiß
2	Sendedaten -	grün	2	Empfangsdaten -	rot
3	Empfangsdaten +	rot/weiß	3	Sendedaten +	grün/weiß
4	Nicht benutzt -	blau	4	Nicht benutzt -	blau
5	Nicht benutzt +	blau/weiß	5	Nicht benutzt +	blau/weiß
6	Empfangsdaten -	rot	6	Sendedaten -	grün
7	Nicht benutzt +	braun/weiß	7	Nicht benutzt +	braun/weiß
8	Nicht benutzt -	braun	8	Nicht benutzt -	braun

Die direkte Verbindung zwischen Sensor und Netzwerkkarte erfordert ein gekreuztes Ethernetkabel. Im Beispiel links ist die Kreuzung der Adern deutlich erkennbar an der Position der blauen und roten Adern. Wenn ein Ethernet-Switch zwischengeschaltet wird, können 1:1 belegte Ethernetkabel verwendet werden. Sofern der Ethernet-Switch durch seine "Autosense + AutoMDI"-Funktion die Leitungspolarität automatisch erkennt, spielt es keine Rolle ob 1:1 belegte oder gekreuzte Kabel verwendet werden.

11.3. Dip-Schalter- / Filtereinstellungen

Über Dipschalter unter der Abdeckung im Deckel der Elektronik-Einheit wird die Ausgaberate Die benachbarten Potentiometer dürfen nicht verändert werden.

Die interne Abtastrate des Sensors wird durch die Dip-Schalter-Einstellungen nicht geändert.

Beispiel: Bei der Einstellung 2,5 kHz wird eine aufgenommene Schwingung einer Frequenz von 2 nennenswerte Abschwächung übertragen. Eine Frequenz von 10 kHz würde jedoch stark abgeschwächt.

LAM-S (10 kHz)						
Frequenz	S1	S2	S3	S4	S5	S6
10 kHz *	-	-	-	-	-	-
7 kHz	x	-	-	-	-	-
4 kHz	-	x	-	-	-	-
1 kHz	-	x	х	-	-	-
250 Hz	-	-	-	x	-	-
100 Hz	-	-	-	-	х	-
25 Hz	-	-	х	х	-	x
20 Hz	x	x	х	х	х	x

LAM-F (100 kHz)						
Frequenz	S1	S2	S3	S4	S5	S6
100 kHz *	-	-	-	-	-	-
70 kHz	х	-	-	-	-	-
40 kHz	х	x	-	-	-	-
10 kHz	-	x	x	-	-	-
2,5 kHz	-	-	-	х	-	-
1 kHz	-	-	-	-	х	-
250 Hz	-	-	-	-	х	х
230 Hz	x	x	x	х	х	x

x) Schalter = geschlossen

-) Schalter = offen

* Werkseinstellung

11.4. Status-LED's

Die auf dem Deckel der Elektronik-Einheit befindlichen Leuchtdioden zeigen diverse Zustände des Messsystems an:

Status LED's	Bedeutung	Farbe	In Funktion
Power	Power on	grün	leuchtet
Link	Ethernet Link in Funktion	gelb	leuchtet
10 / 100	Ethernet Link Aktivität	gelb	blinkt schnell
MAX *	Oberer Schwellenwert erreicht	orange	leuchtet
OK *	Objekt innerhalb Messbereich	grün	leuchtet
MIN *	Unterer Schwellenwert erreicht	gelb	leuchtet
Error	FPGA Selbsttest OK	rot	leuchtet nicht
	Objekt außerhalb Messbereich	rot	leuchtet

* OK bezieht sich auf den Messbereich des Sensors. Solange die grüne LED leuchtet, befindet sich das Objekt im Messbereich, außerhalb des Messbereichs leuchtet die LED nicht.

MAX/MIN sind vom Nutzer einstellbare Schwellwerte und müssen im Messbereich liegen (Auslieferungszustand: beide liegen innerhalb des Messbereichs, MIN am unteren Ende und MAX am oberen Ende).

12. Kommunikationskomponenten

TCP Clients und Server sind Software-Komponenten in der Entwicklungsumgebung der Software. Diese treten in der fertig kompilierten Software (.exe-File) nur in der Form von "Ports" auf, über die Kommando- und Daten-Protollverkehre abgewickelt werden. Jeder Sensor hat eine eigene IP-Adresse passend zur Subnetz-Maske. Die Einstellung der Port-Adressen, IP-Adresse und Subnetz-Maske müssen bei der Installation des Sensors immer korrekt vorgenommen werden. Diese Parameter sind dafür verantwortlich, dass die Hardware über das Ethernet-Protokoll TCP/IP fehlerfrei kommunizieren kann.

Im Sensor werden Daten zwischengespeichert, bevor diese gesendet werden. Zur Datenübertragung vom Sensor zum PC und der Steuerkommandos vom PC zum Sensor benutzen wir das TCP/IP-Protokoll. Die Adressen für TCP/IP-Adresse und Ports werden in der Elektronikeinheit gespeichert.

12.1. IP-Adresse des Sensors

Bei Auslieferung hat der Sensor standardmäßig die IP-Adresse 192.168.122.245. Der Sensor und die Netzwerkkarte bilden eine Peer-to-Peer Verbindung (Punkt-zu-Punkt). Die Adresse des Gateways spielt dabei keine Rolle, der Netzwerkverkehr zwischen beiden Partnern sollte auch bei einer abweichenden Gateway-Adresse störungsfrei laufen, sofern die Subnetzmaske passend eingestellt ist.

Falls eine abweichende Adresse vergeben wurde, wird dies in den Lieferpapieren oder durch Aufkleber am Gerät angegeben.

12.2. Regeln für die Vergabe von IP-Adressen

Üblicherweise liegen am Beginn des Adressbereichs die TCP/IP-Adressen der Gateways und Server-PCs. Diese, und die Adressen der Gateways und Router des Netzwerks, wie auch die Adressen mit der Endung (letztes Octect) 0 und 255 müssen frei bleiben.

eingestellt.

kHz ohne

12.3. Adressen-Konflikte auflösen

DHCP wird nicht unterstützt, es müssen fest zugewiesene IP-Adressen für den Sensor und die Netzwerkkarte im PC benutzt werden. Die Netzwerkkarte muss sich im gleichen logischen Segment wie die der Sensor befinden, das heißt die Netzwerkadresse darf sich nur in den letzten drei Stellen unterscheiden.

Netzwerkteilnehmer dürfen niemals gleiche Adressen verwenden!

Tipp:Kennzeichnen Sie die Einheiten mit den zugewiesenen Adressen, so dass Sie bei Konflikten
den "Störer" finden können. Wenn Sie die störende Einheit abschalten, sollte der Konflikt verschwinden.
Ziehen Sie probeweise den Ethernet-Stecker am Switch oder am Sensorkopf.
Zeichnen Sie einen Plan, in den Sie alle Netzwerkadressen eintragen.
Kennzeichnen Sie die Geräte.

Beispiel:

Adresse Sensor 1: 192.168.123.222;
Adresse Sensor 2: 192.168.123.223;
Adresse Sensor 3: 192.168.123. <u>224</u> ;
Adresse Sensor 4: 192.168.123.225;
Adresse Sensor 5: 192.168.123.226;
Adresse Sensor 6: 192.168.123.227;
Adresse Sensor 7: 192.168.123. <u>224;</u> // falsche IP-Adresse = Konflikt!
Adresse Sensor 8: 192.168.123.229;
Adresse Sensor 9: 192.168.12 <u>4</u> .229; // anderes Netzwerksegment!
Adresse Netzwerkkarte: 192.168.123.191
Die Subnet Maske ist für alle Sensor und die Netzwerkkarte = 255.255.255.0

Beispiel: Sensor 7 wurde irrtümlich auf die Adresse 192.168.123.224 gesetzt.

Da diese bereits vergeben ist, gibt es einen "Konflikt" mit dem Sensor Nr. 3. Richtig wäre die Adresse 192.168.123.228.

Bei Sensor 9 wurde ein anderes Netzwerksegment benutzt, dieser Sensor wird von unserer Netzwerkkarte aus nicht gefunden.

Die Netzwerkkarte für diesen Sensor könnte beispielsweise die IP-Adresse 192.168.124.10 haben.

Tipp: Um Sensoren in unterschiedlichen Netzwerksegmenten zu erreichen, kann in den Eigenschaften des Netzwerkadapters unter "Erweiterte Eigenschaften" eine zusätzliche Netzwerkadresse für den Adapter vergeben werden.

13. Datenformat und Schnittstellen-Beschreibung

13.1. Sensorsteuerung

Register HEX/DEZ		Byte	Funktionsregister	Bemerkung, Wert
0x1F	31	0	Software Reset	Das Ethernet-Modul wird neu gestartet
0x22	34	0	IP Adresse, Port	Μ
		1	Netzwerkeinstellungen	E
		2		L
		3		S
		4		E
		5		Ν
		6		S
		7		0
		8		R
		9		IP0(192)
		10		IP1(168)
		11		IP2(123)
		12		IP3(245)
		13		PORT-HI
		14		PORT-LO
		15		SPEED(10/100)
0x26	38	0	Max Schwelle Einstellung	Max-High
		1		Max-Low
0x27	39	0	Min Schwelle Einstellung	Min-High
		1		Min-Low

13.2. Header Datenformat

LAM-S und LAM-F Header	Byte Nr.	Länge	Parameter / Wert	Datentyp
Protokoll-Version	0	2	0x2302	unsigned int
Paket-Größe	2	2	Gesamtlänge = 860 Bytes	unsigned int
Serien-Nummer MJ	4	2	vierstellig: Monat, Monat + Jahr, Jahr z.B. 0311	unsigned int
Serien-Nummer Cnt	6	2	Produktions-Nummer; dreistellig; 001, 002, 003999	unsigned int
Einschaltzähler	8	4	165535	unsigned long
Reserviert	12	20		unsigned char
Daten-Paket-Nummer	32	2	fortlaufende Nummer; natürliche Zahl, 0,1,2,3999	unsigned int
Ethernet Geschwindigkeit	34	1	1 10/100-MBit/s	unsigned char
Reserviert 1	35	3		unsigned char
АМВ	38	2	Anfang Mess-Bereich	unsigned int
MB	40	2	Mess-Bereich	unsigned int
MaxValue	42	2	im Web Browser eingestellter Wert	unsigned int
MinValue	44	2	im Web Browser eingestellter Wert	unsigned int
MaxIntensity	46	1	142	unsigned char
MinIntensity	47	1	14	unsigned char
TriggerStatus	48	2	Bit 0 = Min Status; Bit 1 = Max Status	unsigned int
Reserviert 2	50	2		unsigned int
ADZMaxValue	52	2	OxFFFF	unsigned int
ADI MaxValue	54	2	0xFF	unsigned int
AD Frequenz	56	2	30000	unsigned int
AD ValuesMax	58	2	200	unsigned int
AD Values	60	400	2x200 Bytes (200 Werte) je 16 Bit - Abstand	unsigned int
ADI Values	460	200	1x200 Bytes (200 Werte) je 8 Bit - Lichtstärke	unsigned char
ADLValues	660	200	1x200 Bytes (200 Werte) je 8 Bit - Laser-Regelwert	unsigned char
Gesamte Länge		860		

13.3. Statusmeldungen

Voraussetzungen:	Terminal-Software RS-232 Verkabelung am D-Sub-25 Anschluss Netzteil PC mit RS232
Einstellung der RS232:	8 Daten Bit, keine Parity, 1 Stoppbit (8N1) Baudrate = 115.200 Kein Hardware Handshake (Flow Control = none) Terminalsoftware auf Empfang schalten

Nach dem Einschalten der Stromversorgung sendet der Sensor folgende Meldung über die RS232-Schnittstelle:

Daten des RS-232 Prompt:

- Geräte-Typ und Firmware Version
- Seriennummer
- Ethernet Stack Status
- Ethernet Stack: Übertragungsrate
- Ethernet Stack: Settings
- MAC-Adresse
- working IP Adresse
- Subnetz-Maske
- Gateway Adresse
- Aktivität Web-Server
- Einstellung Max und Min
- -
- Ethernet Link Status

14. Integrierter Web-Server

Mit dem integrierten Web-Server kann der Sensor über einen Web-Browser von einem Rechner im gleichen Netzwerk-Segment angesprochen werden. Diese Funktion ist verfügbar, wenn der Sensorkopf an das Netzwerk angeschlossen und funktionsfähig ist.

Funktionen des Web-Servers:

Anzeige von:

- IP-Adresse, Port, Subnetzmaske und MAC-Adresse ٠
- Firmware Version, Seriennummer •
- Optional: Ethernet Geschwindigkeit auf 10 MBit/s reduzieren •

Zusätzlich erlaubt der Zugriff über den Web-Browser die direkte Einstellung von IP-Adresse und Subnetz-Maske. Ein Gateway ist nicht notwendig, da der Sensor eine Punkt-zu-Punkt-Verbindung herstellt.

Voraussetzungen für die Einstellung der IP-Adresse im Web-Browser:

-	-
Firmware Rev.	0.1 oder höher
Sensor	im normalen Betrieb
Remote PC	über Ethernet mit dem Sensor verbunden
	Der PC muss sich im gleichen Netzwerk-Segment wie der Sensor befinden

14.1. Einstellen der Working-IP-Adresse

In die Adresszeile des Web-Browsers wird die			IP-
Adresse des Ethernet-Sensors eingetippt. z.B.			
192.168.122.245. Der Sensor antwortet mit rechts gezeigten Bildschirm. Im unteren Teil	Version info:	Working-Settings:	dem des
Bildschirms befindet sich die grau hinterlegte	Firmware: M7-iLAN v.0.4 110518	MAC: 00:08:DC:04:BE:DB	
Eingabemaske für die Neu-Eintragung der IP-	Default-Settings:	Serial number: 0311003	
Adresse. Tragen Sie die gewünschten Adressdaten inklusive der Subnetz-Maske ein	MAC: 00:08:DC:00:00:00	IP: 192.168.122.245 Port: 03000	und
tippen Sie dann das Passwort in das	IP: 169.254.150.160 Port: 03000	SubNetMask: 255.255.255.000	unu
vorgesehene Feld.	SubNetMask: 255.255.000.000	Speed 10MBit/s:	
Das Passwort lautet: SENSOR	Working-Settings:	Min-Value: 03000	
Bitte beachten:	Transfer Rate: 100MBit	Max-Value: 63000	
Alle Buchstaben werden groß geschrieben!	MAC: 00:08:DC:00:00:00	Password:	
Klicken Sie dann die Schaltfläche "Send" oder	IP: 192.168.123.202 Port: 03000	Sent Calcer	
drücken Sie die Eingabetaste (ENTER).	SubNetMask: 255.255.255.000		
Nach einer kurzen "Bedenkzeit" erscheint ein neues Eenster mit den Einstellungen:			
		IP: 192.168.122.245 Port: 03000	

Bitte beachten: Wenn Sie zuvor eine neue IP-Adresse programmiert haben, so müssen Sie jetzt diese neue Adresse in Ihrem Browser eintragen und die Verbindung unter dieser neuen Adresse neu aufbauen.

> Die IP-Adresse des PC muss ähnlich lauten wie die IP-Adresse des Sensors, lediglich die letzten 3 Zahlen sollen unterschiedlich sein. Beispiel: Sensor-IP = 192.168.122.245 PC-IP = 192.168.122.10

SubNetzMask: 255.255.255.000

The scanner is automatically restarted...

15. Fehlersuche

Funktion	Erste Aktion	Zweite Aktion	Bemerkung
	Überprüfen Sie die	Tauschen Sie Kabel	Prüfen Sie die Einstellungen
	Netzwerkkabel	Verwenden Sie einen Ethernet	der Netzwerkkarte
		Switch, einen anderen PC	Schließen Sie den Sensor über
			ein gekreuztes Netzwerk-
			Kabel an
keine Netzwerkverbindung	Ist am D-Sub-Stecker des	Ist das Kabel im Stecker zu	Stecker öffnen und eventuell
zum PC	Sensors ein Ethernet-	stark verdrillt?	neu anschließen
	Netzwerkkabel		
	angeschlossen?		
	Die Netzwerkkarte im PC	Verwenden Sie einen Ethernet	Das Problem tritt besonders
	erkennt die Polarität von Rx- /	Switch	bei "billiger" GBit-Ethernet-
	Tx nicht automatisch		Hardware auf
	Lesen Sie den RS-232 prompt	Verkabelung entsprechend	Terminal Software muss vor
	beim Einschalten aus	Seite Elektronik-Einheit10	dem Einschalten gestartet sein
	Prüfen Sie, ob jemand	Pingen Sie die IP des Sensors	Cmd: ping xxx.xxx.xxx.xxx
	anderes die IP-Adresse	an!	Wenn der Sensor nicht
	verwendet (Konflikt)		eingeschaltet ist, darf keine
			Antwort kommen.
			Wenn Sie bei ausgeschaltetem
			Sensor trotzdem eine Antwort
			erhalten, dann benutzt ein
	Duifen Cia als Cuitals a un d	Challen Cia aine dinalata	Anderer diese IP-Adresse.
	Pruten Sie ob Switches und	Stellen Sie eine direkte	Sie benotigen dazu eventueli
	Router im Netzwerk den	Verbindung vom PC zum	ein Crosslink-Ethernetkabel!
	Port 3000 akzeptieren	Sensor ner	DC und Concern müssen eich im
	der Netzwerkkerte	im gleichen Sub Notz?	PC und Sensor mussen sich im
		In gleichen Sub-Netz:	Sogmont hofindon
		Provy erforderlich?	Segment beinden
Eth -Link und 100Mbit	Prüfen Sie ob eine Eirewall	Froxy enordements	besonders bei Windows 7
leuchten aber keine	den nort 3000 sperrt	Konfiguration der Eirewall der	treten Verhindungsprobleme
Verbindung	Schalten Sie die probeweise	Anwendungssoftware den	auf wenn gleichzeitig eine
	die Firewall ab	Zugriff auf das Internet	WI AN-Verbindung aktiv ist.
	Arp -d	In der Netzwerkkarte	
	1	gespeicherte	
		Verbindungsdaten	
		zurücksetzen	
Langsame Verbindung	Ist die Netzwerkkarte eine	anderen PC, einen anderen	Verwenden Sie keine Hubs
	100 Mbit Version?	Ethernet Switch benutzen	sondern Switches, stellen Sie
			automatische Metrik ein
Verbindung zum PC besteht.	Der PC ist zu langsam	Setzen Sie einen schnelleren	Schalten Sie die
Die Messwerte kommen mit	_	PC ein – CPU Takt min. 800	Grafikauflösung auf minimal
einigen Sekunden		MHz	
Verzögerung		Verwenden Sie 100MBit	
		Netzwerk-Komponenten	

16. Wartung

LAM-Laser-Sensoren sind wartungsfrei. Da es sich aber um optische Messgeräte handelt, müssen die Frontscheiben staubfrei gehalten und/oder (je nach Umgebung) von Zeit zu Zeit gereinigt werden.

 Tipp:
 Die Reinigung kann trocken mit einem fusselfreien Tuch oder mit einer Mischung von 15 ... 20 % Isopropyl-Alkohol + destilliertem Wasser oder Reinigungsbenzin erfolgen.

Vermeiden Sie Fingerabdrücke und entfernen Sie diese gründlich und schnell.

Sauberer Sensor

17. Laser Sicherheit

Gemäß der Norm DIN EN 60825-1 (VDE 0837-1), 2001-11 sind die Sensoren der LAM-Serie den Laserklassen 2 und 3R (optional) zugeordnet. Dementsprechend zu berücksichtigen sind die Unfallverhütungsvorschrift "Laserstrahlung" BGV B2 (früher VBG 93) und deren Anwendung BGI 832 (4/2003) auf neue Laserklassen.

Laser der Klasse 2 strahlen nur im sichtbaren Bereich mit maximal 1 mW Leistung. Der zufällige direkte Blick in den Laserstrahl erzeugt wohl eine starke Blendung und einen Lidschutzreflex, führt aber zu keinem Schaden, auch nicht bei Verwendung optischer Hilfsmittel. Laser der Klasse 3R strahlen ebenfalls im sichtbaren Bereich bei einer Maximalleistung von 5 mW, jedoch auf eine größere Fläche.

- Blicken Sie niemals absichtlich direkt in den Laserstrahl
- Richten Sie den Laser niemals direkt auf andere Personen
- Einweisung für die Bediener
- Vor der Reinigung Laser abschalten! (Betriebsspannung aus!)
- Suchen Sie den Strahl mit Hilfe eines Stück Papiers
- Verwenden Sie keine Spiegel in der Nähe des Lasers
- Abschirmungen für den Arbeitsbereich des Sensors (Einhausung)
- Schutzhaube / Abdeckung zum Beispiel aus opak mattem Plexiglas
- Eventuell reflektierende Teile in der Umgebung der Messstelle mit matt schwarzer Farbe lackieren

Wenn der Laserstrahl die Haut berührt sind keinerlei Probleme zu befürchten.

Laser-Warnschilder:

18. Software-Beispiele

Erklärung zu Software-Beispielen:

Zur Integration der LAM-S und LAM-F-Sensoren in vorhandene Software ist eine DLL verfügbar. Nähere Informationen erhalten Sie auf Anfrage.

Unsere Software-Entwickler arbeiten unter "Visual Studio / C++". Die Quelltexte sollen als Anregungen oder Hilfestellung für die Entwicklung eigener Software angesehen werden. Eine Garantie, dass dieser Source-Code fehlerfrei ist, kann nicht gegeben werden. Wir behalten uns das Recht vor, jederzeit und ohne vorherige Ankündigungen Änderungen an Source-Code und Firmware durchzuführen.

Header:

#define M27ILANPROTOKOL2302ETHERNETPACKETSIZE 860 #define ADVALUESPROTOKOL2302MAX 200

typedef struct

{	unsigned int uiVersionProtokol;	//2 0x2302
	unsigned int uiVersionProtokolSize;	//2 860
	unsigned int uiSerienNummerMJ;	//2 MMJJ
	unsigned int uiSerienNummerCnt;	//2 XXX
	unsigned long ulEinschaltzaehler;	//4
	unsigned char ucReserved[20];	//20
	unsigned int uiPacketNummer;	<pre>//2 fortlaufende Nummer</pre>
	unsigned char ucEthSpeed;	//1 10/100-MBit/s
	unsigned char Reserved1[3];	//3
	unsigned int uiAMB;	<pre>//2 AnfangsMessBereich</pre>
	unsigned int uiMB;	//2 MessBereich
	unsigned int uiTriggerMaxValue;	<pre>//2 im WebBrowser eingestellter Wert</pre>
	unsigned int uiTriggerMinValue;	<pre>//2 im WebBrowser eingestellter Wert</pre>
	unsigned char ucTriggerMaxIntensity;	//1 142
	unsigned char ucTriggerMinIntensity;	//1 14
	unsigned int uiTriggerStatus;	//2 (uiTriggerMax << 1) uiTriggerMin
	unsigned int uiReserved2;	//2
	unsigned int uiADZMaxValue;	//2 0xFFFF
	unsigned int uiADIMaxValue;	//2 0xFF
	unsigned int uiADFrequenz;	//2 30000
	unsigned int uiADValuesMax;	//2 200
	unsigned int uiADValues[ADVALUESPROT(OKOLMAX]; //2x200:400
	unsigned char chADIValues[ADVALUESPR	OTOKOLMAX]; //1x200:200
	unsigned char chADLValues[ADVALUESPR	OTOKOLMAX]; //1x200:200
}_	structADValues;	//860

Ethernet-Sensor-Software-Implementierung:

Zur Kommunikation mit einem Sensor mit der Ethernet-Schnittstelle werden so genannte "WinSocket"-Funktionen verwendet. Diese Funktionen sind Bestandteil aller Windows Betriebssysteme. Alle anderen Betriebssysteme verwenden analoge Funktionen. Winsock-Funktionen sind in einer "ws2_32.dll"-Datei gekapselt. Diese Datei gehört zum Lieferumfang des Windows-Betriebssystems. Die Kommunikation läuft über einen TCP/IP-Protokoll ab, und der Sensor fungiert als Server. Somit muss die Gegenstelle (z.B. PC) als Client programmiert werden.

Zum Beginn der Arbeit mit den Netzwerkfunktionen muss die "WSAStartup"-Funktion aufgerufen werden, damit die allgemeinen Funktionen vom WindowsSocket benutzt werden dürfen. Als nächstes holt man sich ein gültiges TCP-SOCKET (eine Art: Objekt) vom System. Das geschieht mit dem Aufruf der Funktion: "socket". Nachdem ein gültiges *SOCKET* vorliegt, ist es möglich, eine Verbindung mit dem Sensor aufzubauen. Das geschieht mit der Funktion: "connect". Nach erfolgreichem Aufruf dieser Funktion, ist der PC mit dem Sensor verbunden und es ist möglich, zwischen den beiden Endgeräten Daten mit den Befehlen "send" und "recv" auszutauschen. Am Ende des Kommunikationsablaufs müssen alle Speicherbereiche und Sockets ("closesocket") freigegeben werden. Zuletzt muss noch die Funktion "WSACleanup" aufgerufen werden.

Software-Beispiel für den Aufruf der Ethernet-Funktionen:

```
- wird später durch eine DLL ergänzt -
// Die Empfangsbuffergröße sollte modulo 2048 sein, da der Sensor in 2048 Blöcken sendet
#define TCPBUFSIZE 2048
// Struktur für WinSocket
WSADATA wsaData;
// Socket-Variable
SOCKET sTCP;
// Empfangsbuffer der oben festgelegten Größe einrichten
char chBuffer[TCPBUFSIZE];
// Anzahl der empfangenen Bytes vom Sensor
DWORD dwReceived = 0;
// ständing versuchen Socket zu holen, falls Verbindung unterbrochen ist
BOOL bRunSocket = TRUE;
// ständing versuchen Verbindung aufzubauen, falls Empfangsfunktion mit Fehler zurückkam
BOOL bRunConnect = TRUE;
// ständing die Daten vom Sensor empfangen
BOOL bRunRead = TRUE;
// TimeOut in [ms] für die Empfangsfunktion festlegen
// Nach dieser Zeit kehrt die "recv"-Funktion von alleine zurück mit dem dwReceived=0
// danach wird die Verbindung verriegelt und sofort aufgebaut
DWORD dwRecvTimeOut = 10000;
//Versuchen WinSocket der 2.1-Version zu starten
if (WSAStartup (MAKEWORD(2, 1), &wsaData) != NULL)
{
 AfxMessageBox("Fehler: WSAStartup", MB_OK | MB_ICONEXCLAMATION, NULL);
 return;
}
//Struktur für den "connect"-Befehl
SOCKADDR IN serv addr;
//MUSS den Wert "AF INET" haben
serv_addr.sin_family = AF_INET;
//Die Port-Nummer vom Sensor übergeben
serv_addr.sin_port = htons(atoi("3000"));
//Die IP-Adresse vom Sensor übergeben
serv addr.sin addr.S un.S addr = inet addr("192.168.123.224");
while(bRunSocket)
{
 bRunConnect = TRUE;
 //Socket holen für TCP=SOCK_STREAM
 sTCP = socket(AF_INET, SOCK_STREAM, 0);
 //Socket-Fehler?
 if (sTCP == INVALID_SOCKET)
 {
   sTCP = 0;
   bRunConnect = FALSE;
   TRACE("SocketError\n");
//TimeOut für die "recv"-Funktione setzen
 setsockopt(sTCP, SOL_SOCKET, SO_RCVTIMEO, (const char*)&dwRecvTimeOut, sizeof(int));
 while(bRunConnect)
//Verbindung aufbauen...
   if (connect(sTCP, (SOCKADDR*) &serv_addr, sizeof(SOCKADDR)) == INVALID_SOCKET)
   {
//Falls fehlgeschlagen weiter Versuchen aufzubauen...
   }
   else
   {
//Verbindung aufgebaut: Daten holen...
     bRunRead = TRUE;
     while(bRunRead)
    {
      dwReceived = recv(sTCP, chBuffer, TCPBUFSIZE, NULL);
      if ((dwReceived == 0) || (dwReceived == INVALID_SOCKET))
```

```
{
      //die Verbindung wurde eventuell unterbrochen, um sicher zu gehen
      //die Verbindung neuaufbauen...
      bRunRead = FALSE;
      bRunConnect = FALSE;
      closesocket(sTCP);
     }
     else
     {
      //hier liegen empfangene Daten vor...
      //gesamte Anzahl der empfangenen Daten steht in dwReceived
    }
  }
 }
}
//Am Ende Socket freigeben
closesocket(sTCP);
WSACleanup();
```

Zum Senden von Daten an den Sensor verwendet man die "send"-Funktion. Wie auch bei der "recv"-Funktion ist es notwendig dass man vorher eine Verbindung zum Sensor aufgebaut hat, d.h. im Besitz eines gültigen Sockets ist. Im dem oben wiedergegebenen Programm-Ausschnitt kann man anstelle der "recv"-Funktion die "send"-Funktion einsetzen.

// Daten-Buffer einrichten

}

// Dieser Daten-Buffer enthält schon einen Befehl um den Sensor

// in den Single-Modus zu versetzen

char chBuffer[2] = {0x14, 0x01};

send(sTCP, chBuffer, 2, NULL);

18.1. Änderungsverzeichnis

Version	Datum	Änderung		
2011-05-13	13.05.2011	Header-Tabelle		
2012-12-10	10.12.2012	Passwort geändert auf "SENSOR"		
2015-10-19	19.10.2015	Pinbelegung aktualisiert		
2016-04-05	05.04.2016	Aktualisierter Software-Hinweis		
2016-06-23	23.06.2016	Korrektur Einschaltzähler		
		Berichtigung AD Values (Anzahl Werte)		
		Berichtigung ADI Values, ADL Values (Bit-Größe)		
2016-08-09	09.08.2016	Kapitel-Umstrukturierung mit Einführung von Kapitelnummerierung		
		Einfügen der Maßzeichnungen von Sensorköpfen und Elektronik		

19. Anhang

19.1. Maßzeichnungen Sensorköpfe

Gewicht: 480 g

19.2. Maßzeichnung Elektronik-Einheit

Gewicht: 300 g

Irrtum und technische Änderungen vorbehalten