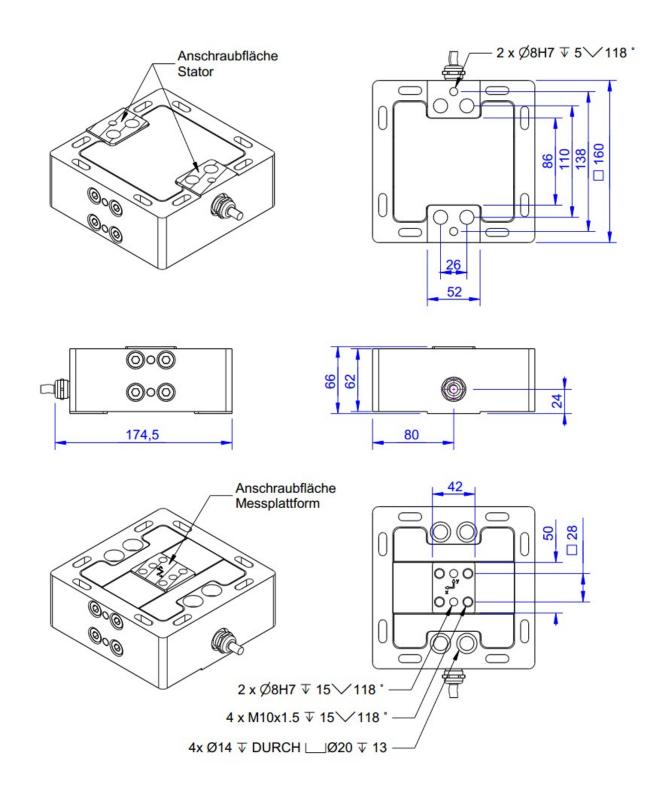


Beschreibung

Der 3-Achs Sensor K3D160 eignet sich für die Kraftmessung in drei zueinander senkrechten Achsen.

Die Krafteinleitung erfolgt auf dem Absatz 42mm x 50mm. Auf dieser Fläche kann ein Bauteil mit 4 Schrauben M10. Die Unterseite des Sensors wird mit 4 Schrauben M12 an der Unterseite befestigt.



Einsatzgebiete

Der 3-Achsen Kraftsensor K3D160 wird für verschiedene Aufgaben im Maschinen und Fahrzeugbau genutzt. Der Sensor findet Einsatz z.B. zur Messung von Schnittkräften bei Drehmaschinen Anwendung - dabei werden permanent die optimalen Schnittparameter hergestellt und die Abnutzung des Werkzeuges überwacht.

Des weiteren findet der Sensor Anwendung in Schleppkanälen, an Montagerobotern und im Unterwasserbereich

Abmessungen

Technische Daten

Maße / Material		
Material		Federstahl (vernickelt)
Länge x Breite × Höhe	mm	160 x 160 x 66
Krafteinleitung / Gewinde		4x M10 bzw.4 x M12
Gewicht	kg	8,4
mechanische Daten		
Nennkraft (FS)	kN	2, 5, 10, 20, 50
Gebrauchskraft	%FS	150
Bruchkraft	%FS	300
elektrische Daten		
Nennkennwert x-Achse	mV/V @ FS	1,0 1)
Nennkennwert y-Achse	mV/V @ FS	1,0 1)
Nennkennwert z-Achse	mV/V @ FS	1,0 1)
max. Speisespannung	V	10
Eingangswiderstand x, y-Achse	Ohm	700 ± 5
Ausgangswiderstand x, y-Achse	Ohm	700 ± 5
Eingangswiderstand z-Achse	Ohm	350 ± 5
Ausgangswiderstand z-Achse	Ohm	355 ± 5
Isolationswiderstand	Ohm	> 5 · 10 ⁹
Anschluss 12 Leiter offen	m	5
Genauigkeit		
Genauigkeitsklasse	%	1
Linearitätsfehler	% FS	≤ 0,2
Umkehrspanne	% FS	≤ 0,1
Temperaturkoeffizient des Nullsignals	%FS/K	± 0,05
Temperaturkoeffizient des Kennwertes	%RD/K	± 0,05
Kriechfehler (30 min)	% FS	≤ 0,05
Exzentrizität & Übersprechen		
Zulässiges Moment durch Exzentrische Last	Nm	1000 (2000) ²⁾
Einfluss exzentrischer Krafteinleitung auf	%FS @ 50mm	1
Übersprechen von x auf y bei Nennlast	% FS.	<1
Übersprechen von y auf x bei Nennlast	% FS	<1
Übersprechen von z auf x/y bei Nennlast	% FS	<1
Temperatur		
Nenntemperaturbereich	°C	-10+70
Gebrauchstemperaturbereich	°C	-10+85
Lagertemperaturbereich	°C	-10+85
ALL DD L (1/D %) FO F	Lucat / Full Cooles)	

Abkürzungen: RD: Istwert ("Reading"); FS: Endwert ("Full Scale");

^{1) 0,5}mV/V bis 500N; 1mV/V ab 1kN, Der exakte Kennwert wird im Prüfprotokoll ausgewiesen.

²⁾ Werte in Klammern für 20kN und 50kN Sensoren;

Anschlussbelegung

		Beschreibung	Aderfarbe	M23- Steckverbinder
X-Achse	+ Us	Sensorspeisung	braun	2
	- Us	Sensorspeisung	weiß	1
	+ Ud	Brückenausgang	grün	3
	-Ud	Brückenausgang	gelb	4
Y-Achse	+ Us	Sensorspeisung	rosa	6
	- Us	Sensorspeisung	grau	5
	+ Ud	Brückenausgang	blau	7
	- Ud	Brückenausgang	rot	8
Z-Achse	+ Us	Sensorspeisung	violett	10
	- Us	Sensorspeisung	schwarz	9
	+ Ud	Brückenausgang	grau / rosa	11
	- Ud	Brückenausgang	rot / blau	12

^{*}Pin 13 – 16 werden nicht belegt.